

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC -270001 – 2005 Certified)

WINTER -2019 EXAMINATION

Subject code:

22205

Model Answer

Important Instructions to the Examiners:

- 1) The answer should be examined by keywords and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language error such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skill).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figure drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In the some cases, the assumed constants values may vary and there may be some difference in the candidates answer and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

QU		MARK
E	ANSWER WITH QUESTION	S
NO		
1	Attempt any FIVE of the following:	10
a)	State the classification of surveying based on nature of field.	
Ans.	a) Land surveying	2
	b) Marine or Navigation surveying	Marks
	c) Astronomical surveying	
b)	State the object of surveying.	
Ans.	1. The object of surveying is to prepare a plan / map to show the relative	
	positions of the objects on the surface of the earth. It shows the natural	1 mark
	features of a country such as rivers, hills, lakes and artificial such as villages,	each
	roads, railways, bridges etc.	
	2. To determine relative heights of different points.	(Any
	3. To determine area of given piece of land.	Two)
	4. To prepare contour maps.	
c)	List any four instruments used for linear measurement	
Ans.	1) Chain	1/2
	2) Tape	mark
	3) Arrows	each
	4) Pegs	(Any
	5) Ranging rod	four)
d)	State any four types of tapes	
Ans.	1) Cloth / Linen Tape	1/2
	2) Metallic Tape	mark
	3) Steel Tape	each
	4) Invar Tape	
	5) Digital Tape	(Any
	6) Synthetic Tape	four)
e)	State the types of benchmarks.	
Ans.	1) Great Trigonometrical Survey benchmark (GTS)	1/2
	2) Permanent Benchmark	mark
	3) Temporary Benchmark	each
	4) Arbitrary Benchmark	Cacii

instrupoint ii) H RL o addir taken g) Writ Ans. 1. Se area i	check Sight Reading: This is the first staff reading taken in any set up of the lument after leveling has been perfectly done. This reading is always taken on a cof known RL i.e on bench mark or change point (leight of instrument: When the levelling instrument is properly levelled, the of the line of collimation is known as Height of instrument. This is obtained by the BS reading to the RL of the BM or CP on which the staff reading was and the anchor point inside or outside the figure depending on size of figure. If the is very large, it can be divided into number of sections.	1 mark 1 mark
point ii) H RL o addir taken g) Writ Ans. 1. Se area i	to of known RL i.e on bench mark or change point leight of instrument: When the levelling instrument is properly levelled, the of the line of collimation is known as Height of instrument. This is obtained by the BS reading to the RL of the BM or CP on which the staff reading was the any two precautions to be taken while using planimeter. It the anchor point inside or outside the figure depending on size of figure. If the	1 mark
ii) <u>H</u> RL o addir taken g) Writ Ans. 1. Se area i	deight of instrument: When the levelling instrument is properly levelled, the of the line of collimation is known as Height of instrument. This is obtained by the BS reading to the RL of the BM or CP on which the staff reading was the any two precautions to be taken while using planimeter. It the anchor point inside or outside the figure depending on size of figure. If the	1 mark
RL o addir taken g) Writ Ans. 1. Se area i	of the line of collimation is known as Height of instrument. This is obtained by the BS reading to the RL of the BM or CP on which the staff reading was at. It the anchor point inside or outside the figure depending on size of figure. If the	1 mark
g) Writ Ans. 1. Se area i	ng the BS reading to the RL of the BM or CP on which the staff reading was a. te any two precautions to be taken while using planimeter. t the anchor point inside or outside the figure depending on size of figure. If the	1 mark
g) Writ Ans. 1. Se area i	te any two precautions to be taken while using planimeter. It the anchor point inside or outside the figure depending on size of figure. If the	
g) Writ	te any two precautions to be taken while using planimeter. It the anchor point inside or outside the figure depending on size of figure. If the	
Ans. 1. Se area i	t the anchor point inside or outside the figure depending on size of figure. If the	
area i		
	is very large, it can be divided into number of sections.	
2. Th	ne value of C (constant) is added only when the anchor point is inside the figure.	1 mark
3. N	is considered positive when zero of the dial passes the index mark in clockwise	each
direc	tion	
4. N	is considered negative when zero of the dial passes the index mark in	(Any
antic	lockwise direction	two)
5 Tra	ncing is always done in clockwise direction.	
	OR	
Prec	autions to be taken for Digital Planimeter:	
1	. Set the scale as per given drawing to the planimeter.	
2	. Tracing point is moved preciously over the boundary of figure.	
3	. Operating manual shall be referred before operating different functions	
2) Atter	mpt any THREE of the following	12
a) A ro	oad actually 1420m long was found 1414m when measured by a defective	
chair	n 30m chain. How much correction does the chain need?	
Ans. Give	n: L=30m True length=1420m, Measured length =1414m	
Solut	tion:	
True	Length = (L'/L) * Measured Length	
1420	= (L'/30) * 1414	2 mark
L	L'= (1420 * 30) / 1414	
L	z'= 30.12 m.	
Now	L' is greater than L. So, the chain is too long .	
Amo	unt of correction (e) = $30 - 30.12 = -0.12$ m.	2 mark

b)	Explain the Stepping method of measuring the horizontal distance of sloping			
	ground with sketch.			
Ans.	In direct method which is also known as stepping method, horizontal distance is			
	directly measured as shown in fig.			
	Stepping Method			
	Horizontal distance between A and B is required to be measured.			
	Procedure:			
	i) A portion of tape say 2 to 4m is stretched horizontally with one end resting on	2		
	ground and other end held horizontally at convenient height.	marks		
	ii) The point vertically below the other end is transferred on the ground with the			
	help of plumb bob (Say C).			
	iii) The next step starts from the C and the method is continued till point B reached.			
	D 13	2		
		marks		
	L = L1 + L2 + L3			
c)	Draw conventional symbol for i) Embankment, ii) Pond, iii) Temple, iv) Bridge			
Ans.				
7 4 11 5 1	1) Embankment 2) Pond			
	Embankment (Tilling) Lake or Pond	1 Mark		
	3) Temple 4) Bridge	each		
	Temple Bridge or Culvert			

d)	Following are the observed fore bea	ring of the line. Find their back bearings. i)	
	40° 30° ii) N38° 30°W iii) 169° 30° iv) N25 ⁰ 30'E	
Ans.	i) FB =40 ⁰ 30'		1 mark
	$BB=FB+180^0 = 40^0 30^{\circ}+18^{\circ}$	$80^0 = 220^0 30$	
	ii) $FB = N 38^{\circ} 30' W$		1 mark
	$BB = S 38^{0} 30'E$		
	iii) $FB = 169^0 30$		1 mark
	$BB = FB + 180^{0} = 169^{0} 30 +$	$180^0 = 349^0 30'$	
	iv) $FB = N 25^{\circ} 30'E$		1 mark
	$BB = S 25^{\circ} 30'W$		
Q.3	Attempt any THREE of the following	g:	12
a)	Differentiate between WCB & RB		
Ans.	Whole circle bearing (WCB)	Reduced Bearing (RB)	
	1. The horizontal angle made by a	1.The horizontal angle made by a line	
	line with the magnetic north in	with the magnetic north or south	
	the clockwise direction is the	(whichever is closer from the line)	
	whole circle bearing of the line.	in the eastward or westward	
		direction is the Quadrantal Bearing	
		or Reduced Bearing of the line	
	2. Only the magnetic north line is	2. Both magnetic north and south lines	1 Mark
	considered as reference line in	are considered as reference line	each
	whole circle bearing system.	in quadrantal bearing system.	
	3. The clockwise angle from the	3. Both clockwise and anticlockwise	(Any
	reference line is only taken	angle from the reference lines are	Four)
		taken.	
	4. The value of the whole circle	4. The value of the reduced bearing	
	bearing varies from 0° to 360°	varies from 0° to 90°	
	5. Example: 26°, 121°, 245°, 350°	5. Example: N26°E, S59°E, S65°W,	
	etc.	N10°W etc.	
	6. Fig.	6. Fig.	
	Whole Circle Bearing(W.C.B)	Reduced Bearing(R.B)	

b)	Convert the Following WCB to RB. Give Quadrant of the line.	
	(i) 60^{0} 30' (ii) 298^{0} (iii) 128^{0} 30' (iv) 269^{0} 30'	
Ans.	i) 60° 30'	
	RB = WCB	1 Mark
	$R.B. = N 60^{\circ} 30' E$	
	ii) 298° 00'	
	$RB = 360^{\circ}$ - WCB	1 Mark
	$RB = 360^{\circ} - 298^{\circ} 00'$	
	$R.B. = N 62^0 00' W$	
	ii) 128° 30'	
	$RB = 180^{\circ}$ - WCB	1 Mark
	$RB = 180^{\circ} - 128^{\circ} 30'$	
	$R.B. = S 51^0 30' E$	
	iv) 269° 30'	
	$RB = WCB-180^{0}$	1 Mark
	$RB = 269^{\circ} 30' - 180^{\circ}$	
	$R.B. = S 89^{0} 30' W$	
c)	State the functions of any four component parts of prismatic compass.	
Ans.	Component parts of prismatic compass are as follows:	
	1. Break pin - It is used to stop the oscillations of aluminum ring.	
	2. Lifting pin – It lifts the magnetic needle when sight vane is folded.	
	3. Sight vane – It is used to sight/bisect object.	
	 3. Sight vane – It is used to sight/bisect object. 4. Graduated ring / Aluminum ring – It is used to observe the angle OR to show 	1 Mark
	v	1 Mark each
	4. Graduated ring / Aluminum ring – It is used to observe the angle OR to show	
	4. Graduated ring / Aluminum ring – It is used to observe the angle OR to show the graduations	
	 4. Graduated ring / Aluminum ring – It is used to observe the angle OR to show the graduations 5. Adjustable Mirror – to bisect the object when it is too high or too low from the 	each
	 4. Graduated ring / Aluminum ring – It is used to observe the angle OR to show the graduations 5. Adjustable Mirror – to bisect the object when it is too high or too low from the line of collimation. 	each (Any
	 4. Graduated ring / Aluminum ring – It is used to observe the angle OR to show the graduations 5. Adjustable Mirror – to bisect the object when it is too high or too low from the line of collimation. 6. Sun Glasses – Used to bisect the luminous object to reduce strain on eyes. 	each (Any
	 4. Graduated ring / Aluminum ring – It is used to observe the angle OR to show the graduations 5. Adjustable Mirror – to bisect the object when it is too high or too low from the line of collimation. 6. Sun Glasses – Used to bisect the luminous object to reduce strain on eyes. 7. Magnetic needle- To direct magnetic north. 	each (Any
	 4. Graduated ring / Aluminum ring – It is used to observe the angle OR to show the graduations 5. Adjustable Mirror – to bisect the object when it is too high or too low from the line of collimation. 6. Sun Glasses – Used to bisect the luminous object to reduce strain on eyes. 7. Magnetic needle- To direct magnetic north. 8. Pivot- To support the magnetic needle. 	each (Any
	 4. Graduated ring / Aluminum ring – It is used to observe the angle OR to show the graduations 5. Adjustable Mirror – to bisect the object when it is too high or too low from the line of collimation. 6. Sun Glasses – Used to bisect the luminous object to reduce strain on eyes. 7. Magnetic needle- To direct magnetic north. 8. Pivot- To support the magnetic needle. 9. Reflecting prism-observer can see the graduation erect and magnified. 	each (Any
	 4. Graduated ring / Aluminum ring – It is used to observe the angle OR to show the graduations 5. Adjustable Mirror – to bisect the object when it is too high or too low from the line of collimation. 6. Sun Glasses – Used to bisect the luminous object to reduce strain on eyes. 7. Magnetic needle- To direct magnetic north. 8. Pivot- To support the magnetic needle. 9. Reflecting prism-observer can see the graduation erect and magnified. 10. Metal cover- It is provided over the glass lid and sighting vane when the 	each (Any

d)	The following	bearing	were	taken	in a	closed	compass	traverse	survey.
	Determine the	correct be	aring.	Find st	tation	affected	by local a	ttraction.	

Line	FB	BB
AB	48 ⁰ 25'	230°
BC	177 ⁰ 45'	356°
CD	104 ⁰ 15'	284 ⁰ 55'
DE	165 ⁰ 15'	345 ⁰ 15'
EA	259 ⁰ 30'	79 ⁰

Ans. All the bearings are observed and difference of their FB and BB are determined below.

Line	Difference	Error
AB	181 ⁰ 35'	1 ⁰ 35'
BC	178 ⁰ 15'	1 ⁰ 45'
CD	180 ⁰ 40'	0040
DE	180 ⁰ 0'	000,
EA	180 ⁰ 30'	0030

The difference between FB and BB of the line DE is exactly equal to 180^o0'. Hence station D and E are free from local attraction and bearing observed from D and E are corrected.

For line EA:

Observed FB of line EA= 259°30' is corrected, as station E is free from local attraction.

Corrected BB of line EA= $259^{0}30$ '- $180^{0} = 79^{0}30$ '

1/2

1 Mark

But observed BB of line EA 79000,

Mark

Observed BB < Corrected BB

Error is negative and correction is positive

Error = $79^{\circ}00$ '- $79^{\circ}30$ '= **-0**°**30**'

Correction at $A=+0^{0}30^{\circ}$

For line AB:

Observed FB of line AB= 48⁰25'

Apply correction of $+0^{0}30$ ' at A

1/2

Mark

1/2

Mark

1/2

Mark

Corrected FB of line AB= $48^{\circ}25' + 0^{\circ}30' = 48^{\circ}55'$

Corrected BB of line AB= $48^{\circ}55' + 180^{\circ}00' = 228^{\circ}55'$

Observed BB > Corrected BB

Error is positive and correction is negative

Error = $230^{0}00$ '- $228^{0}55$ '= $+1^{0}05$ '

Correction at $B = -1^{0}05$

For line BC:

Observed FB of line BC= 177⁰45'

Apply correction of -1⁰05' at B

Corrected FB of line BC= 177⁰45'- 1⁰05'= 176⁰40'

Corrected BB of line BC= 176⁰40'+ 180⁰00'=356⁰40'

Observed BB < Corrected BB

Error is negative and correction is positive

Error = $356^{\circ}00$ '- $356^{\circ}40$ '= **-0**°**40**'

Correction at $C=+0^040^\circ$

For line CD:

Observed FB of line CD= 104⁰15'

Apply correction of $+0^{0}40$ ' at C

Corrected FB of line CD= $104^{\circ}15' + 0^{\circ}40' = 104^{\circ}55'$

Corrected BB of line CD= $104^{0}55$ '+ $180^{0}00$ '= $284^{0}55$ '

Check:

The observed bearing is also 284⁰55' which tallies with corrected bearing, since the station D free from local attraction.

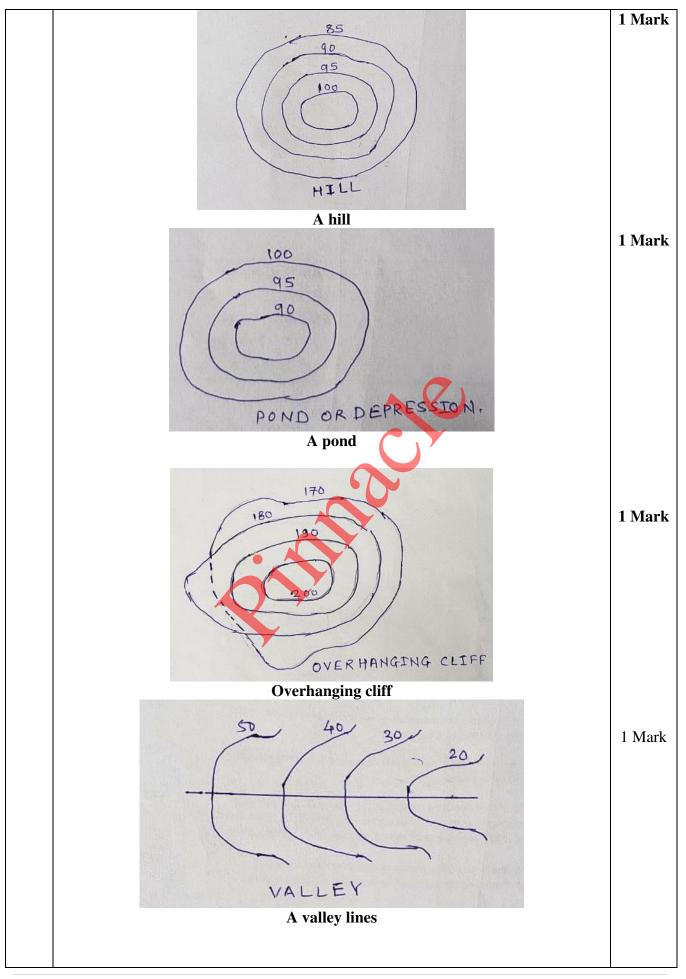
I in a		Corrected		Remark	
Line	Correction	FB	BB		
AB	- 1 ⁰ 05' at B	48 ⁰ 55'	228 ⁰ 55'	station D and E are free	
BC	$+0^{0}40$ ' at C	176 ⁰ 40'	356 ⁰ 40'	from local attraction	13.7 1
CD	$0^{0}0$ ' at D	104 ⁰ 55'	284 ⁰ 55'		1Mark
DE	0 ⁰ 0' at E	165 ⁰ 15'	345 ⁰ 15'		
EA	+0 ⁰ 30' at A	259 ⁰ 30'	79 ⁰ 30'		

	Attempt any <u>Three</u> of the following:		12
]	Distinguish between closed traverse a	and open traverse.	
	Closed traverse Survey	Open traverse Survey	
	1. In Closed traverse survey the	1. In open traverse survey bearing of	
	bearing of first line and included	all survey lines are measured.	
	angles are measured.		
	2. When the finishing point of	2. When starting point of survey	
	survey coincides with the starting	does not coincide with last point	
	point of the survey, it is known as	of the survey, it is known as open	
	closed traverse.	traverse.	
	3. It is suitable for the survey of	3. It is used for the survey of	
	boundaries of plots, forests, estate,	roads, rivers, coastal line,	
	etc.	railways. etc.	1 Mar
	4. Fig.	4. Fig.	each
			(Any
	POND C POND C TRAVERSE (EG Fig. 3.7 Closed Traverse	TRAVERSE LEG C	four
_	5.Check:	5. Check:	
	a) Sum of all internal included	a) Length of check line on map =	
	angles = $(2N-4) \times 90^0$	Length of check line on ground	
	b) Sum of all external angles =	b) Bearing of check line on map =	
	$(2N + 4) \times 90^0$	Bearing of check line on ground	

b)	Explain the procedure for profile levelling and cross Sectioning	
Ans.	For Profile levelling:	
	CP ₁	1 Mark
	1) Let PQR be the given centre line. 2) Mark point at 10 m intervals on this line. 3) Level is set up on a firm ground at a suitable point H. 4) Temporary adjustment of level is done and B.S is taken on B.M. 5) The RL of collimation (HI) is worked out by adding B.S. to the R.L. of B.M. The chain is stretched from P toward the point Q. 6) Also, the staff readings are taken at 10 m points, and entered in the I.S column against the respective changes. 7) Beside these points, the staff readings are taken at the representative points. for example slope of ground surface changes appreciably. 8) When it is found necessary to shift the instruments on account of the length of sight exceeding about 100 m or the further points not being possible to be observed owing to the irregularities of the ground, CP1 is taken at suitable position, and F.S is taken on it and entered in F.S column. 9) The instrument is then shifted and set up on firm ground at I2 as before. 10) B.S is taken on CP1 and new HI is calculated.	1 Mark
	For cross Sectioning: While profile leveling is in progress, cross-sectional leveling should also be done. The cross-sections are taken perpendicular to the Centre line of the alignment at some regular intervals (say 20m, 40m etc). The purpose of cross-sectional leveling is to know the undulation of the ground surface transverse to the centre of the road.	1 Mark

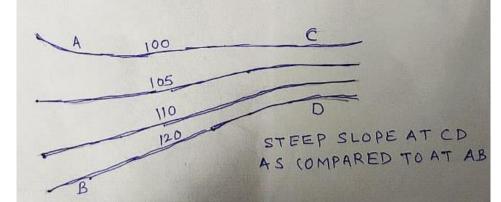
The length depends upon the nature of the work. In case of ordinary work, the length may be 20 or 40 m on each side of the center line. The levels are taken at an interval of 5 m on each side. Additional readings may be taken if the nature of the ground surfaces suddenly changes. Cross Section 1 Mark c) State and explain the temporary adjustments of a dumpy Level. Ans. 1. Setting up the level. **a.** The level fixed on tripod. **b.** The legs of tripod stand are well spread so that the level will remain stable on tripod. c. Bring all the three foot screws in the centre of their run so that they can be turned clockwise or anticlockwise as required, for levelling purpose 1 Mark d. Adjust the height of the instrument so that the observer can comfortably see through the telescope and note the readings. e. Fix two legs of tripod and adjust third leg in such a way that the levelling head will become as horizontal as possible by eye judgment. 2. Levelling up the level. **a.** The base of the tripod is already leveled with the help of cross bubble. **b.** To make accurate adjustment of the level, the longitudinal level is adjusted in the centre of its run, with the help of three foot screws. c. Make the bubble parallel to the any selected pair of foot screws. Now; turn both 1 Mark the foot screws either inward or outward with the help of foot screws till the bubble appears in the center. **d**. Turn the telescope through 90° as shown in fig. below and now with the help of third screw bring the bubble of levelling tube in the center.

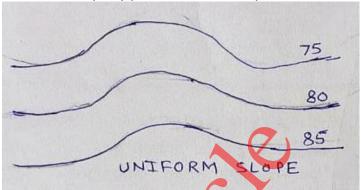
	Foot screw Longitudinal bubble tube A B A B	
	(a) (b)	
	3. Focusing the Eye piece.	
	a. Hold a sheet of white paper in front of the objective glass 4 to 6 cm away from	
	objective glass and see through the eye piece.	1 Mark
	b. Turn the eye piece inwards or outwards in the socket so that the cross hair on the	2 1/20/2 22
	diaphragm appears sharp and clear.	
	4. Focusing the Object glass.	
	a. Direct the telescope towards any object, say a levelling staff in the field which is	
	kept at a distance. See through eyepiece whether the staff is visible, distinct or not.	1 Mark
	b. If not, then turn the focusing screw till the image is distinct and clear. The cross	1 Wark
	hair on the diaphragm should also be seen clearly.	
d)	Explain Fly levelling and also state its purpose.	
Ans.	Procedure:	
	1. Set up the level at a point from where BM is visible and perform temporary	
	adjustments.	
	2. Position of the level should be approximately midway between the BS and FS	
	stations.	
	3. Rotate the telescope towards the leveling staff on BM, observe and record the	
	staff readings in the BS columns of the level book.	
	4. Take a FS on the point towards working site. This point would be change point	2
	(CP).	Marks
	5. Shift the instrument to new position. First reading from the new instrument	
	position is the BS on change point.	
	6. Continue the procedure till the readings on the suitable station at working site is	
	recorded.	
	7. Return back by shortest route to the B.M and take the last reading on B. M	
	8. Find the elevations of the points by HI or rise and fall method. Last reading taken	



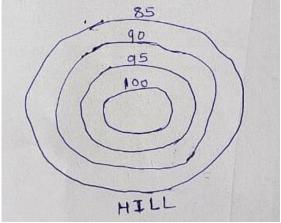
poses: arrying of B.M t the end of su to connect the mpt any TW following cor lling staff on a re. 0 on A, 3.125, 0, 1.850, 0.96 R.L. of A wa rise and fall r	D of the for secutive random continuous 2.350, 1.55 on B.	quired surves for checky intermed pollowing: readings vously slop 580, 0.830	vey site. king the acdiate point were taker ing groun 0, 3.500, 2.	of the align with a data con	survey. gnment. umpy lev	el and 4 m	1 Mark (Any two)
arrying of B.M. t the end of su to connect the mpt any TWO following cor lling staff on a re. 0 on A, 3.125, 0, 1.850, 0.966 R.L. of A wa rise and fall r	D of the for secutive random continuous 2.350, 1.55 on B.	s for checy intermed bllowing: readings vously slop	were taker ing groun 0, 3.500, 2.	of the align with a data con	umpy lev	erval of 30	(Any two)
t the end of such that the end	D of the for secutive random continuous 2.350, 1.55 on B.	s for checy intermed bllowing: readings vously slop	were taker ing groun 0, 3.500, 2.	of the align with a data con	umpy lev	erval of 30	(Any two)
t the end of such that the end	D of the for secutive random continuous 2.350, 1.55 on B.	s for checy intermed bllowing: readings vously slop	were taker ing groun 0, 3.500, 2.	of the align with a data con	umpy lev	erval of 30	(Any two)
fo connect the mpt any TWo following corolling staff on a re. 0 on A, 3.125, 0, 1.850, 0.96; R.L. of A warise and fall r	B.M at any D of the for secutive recontinuous 2.350, 1.55 on B.	ollowing: readings vously slop	were takening groun 0, 3.500, 2.	of the align with a data con	umpy lev	erval of 30	two)
following cor following cor lling staff on a re. 0 on A, 3.125, 0, 1.850, 0.966 R.L. of A wa rise and fall r	O of the for secutive reaction of continuous 2.350, 1.55 on B.	ollowing: readings vously slop	were taken ing groun), 3.500, 2.	n with a d	umpy lev	erval of 30	, ,
following cor lling staff on a re. 0 on A, 3.125, 0, 1.850, 0.96 R.L. of A wa rise and fall r	a continuo 2.350, 1.5 5 on B. 5 500 m, n	readings vously slop	were taker oing groun 0, 3.500, 2.	d at a con	nmon inte	erval of 30	12
lling staff on a re. 0 on A, 3.125, 0, 1.850, 0.96 R.L. of A wa rise and fall r	a continuo , 2.350, 1.5 5 on B. s 500 m, n	ously slop 580, 0.830	ing groun), 3.500, 2.	d at a con	nmon inte	erval of 30	
tion RS	nemoa.		l level boo	k page an	d apply u	sual checks.	
	IS	FS	Rise	Fall	RL	Remark	
A 3.820				1 442	500.000	Point A	
1	3.125	• .	0.695		500.695		*
2	2.350		0.775		501.470		
3	1.580	7	0.770		502.240		Please
4 3.500		0.830			502.990	CP1	see the
5	2.830		0.670		503.660		markin
6	2.010		0.820		504.480		g
	1.400	0.550				CD2	scheme
	2 650	0.550				CPZ	given at the
10	1.850		0.800				end of
В		0.965	0.885		508.625	Point B	answer
$\sum BS =$		$\sum FS =$	\sum Rise =	\sum Fall =			
4 5 6 7 8 9 10 B	3.500	3.500 2.830 2.010 1.400 3.650 2.650 1.850 $\Sigma BS =$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Ans:	was 100 i	Chainage	B.S	I.S	F.S	H.I	RL	Remark	
	A	00	0.578	1.0	1.5	100.578	100.000	Point A	
	1	30	0.570	0.933		100.570	99.645	1011111	
	2	60		1.768			98.810		* 71
	3	90		2.450			98.128		Pl
	4	120	0.567		3.005	98.140	97.573	CP1	see the
	5	150		1.181			96.959		markii
	6	180		1.888			96.252		g scheme
	7	210	0.612		3.679	95.073	94.461	CP2	given
	8	240		0.705			94.368		at the
	В	270			1.810		93.263	Point B	end of
			$\sum BS = $ 1.757		$\sum FS = $ 8.494				answei
	(Marking	$=rac{6.737}{270} = rac{2}{2}$	orrect enti	ry of readi	ings - 1 Ma	rk, H.I. cal			
c)	(Marking calculation		1 70/6.737 = Orrect enti rithmetic (ry of readi check – 1	ings - 1 Ma M, gradiel	rk, H.I. ca nt Calcula			
c)	(Marking a calculation Draw a c (i)A g (ii)A po	scheme: Co rs – 2 M, Ar ontour line entle slope	1 70/6.737 =	enting di (ii) A	ings - 1 Ma M, gradiel	rk, H.I. can of Calcular atures :			
c) Ans:	(Marking a calculation Draw a c (i)A g (ii)A po	sch eme: Cons – 2 M, Al contour line entle slope	1 70/6.737 =	enting di (ii) A	ings - 1 Ma M, gradie ifferent fe A hill verhangin	rk, H.I. can of Calcular atures :			
ŕ	(Marking a calculation Draw a c (i)A g (ii)A po	sch eme: Cons – 2 M, Al contour line entle slope	1 70/6.737 =	enting di (ii) A	ings - 1 Ma M, gradie ifferent fe A hill verhangin	rk, H.I. can of Calcular atures :			
ŕ	(Marking a calculation Draw a c (i)A g (ii)A po	sch eme: Cons – 2 M, Al contour line entle slope	1 70/6.737 =	enting di (ii) (iv) Ov (vi) A	ings - 1 Ma M, gradie ifferent fe A hill verhangin	rk, H.I. can of Calcular eatures : ag cliff nes			
ŕ	(Marking a calculation Draw a c (i)A g (ii)A po	sch eme: Cons – 2 M, Al contour line entle slope	1 70/6.737 =	enting di (ii) (iv) Ov (vi)	ings - 1 Ma M, gradie ifferent fe A hill verhangin	rk, H.I. can of Calcular eatures : ag cliff nes	tion – 1 M		
ŕ	(Marking a calculation Draw a c (i)A g (ii)A po	sch eme: Cons – 2 M, Al contour line entle slope	1 70/6.737 = prect entirithmetic of the services represented the servi	enting di (ii) (iv) Ov (vi)	ings - 1 Ma M, gradie ifferent fe A hill verhangin	rk, H.I. calmater Calculation	tion – 1 M		1 Marl
ŕ	(Marking a calculation Draw a c (i)A g (ii)A po	sch eme: Cons – 2 M, Al contour line entle slope	1 70/6.737 = prect entirithmetic of the search and	enting di (ii) (iv) Ov (vi)	ings - 1 Ma M, gradie ifferent fe A hill verhangin	rk, H.I. calmater Calculation	tion – 1 M		1 Marl
ŕ	(Marking a calculation Draw a c (i)A g (ii)A po	sch eme: Cons – 2 M, Al contour line entle slope	1 70/6.737 = prect entirithmetic of the search sea	enting di (ii) A (vi) A	ings - 1 Ma M, gradie afferent fe A hill verhangin A ridge lin	rk, H.I. calmit Calculation Ca	tion – 1 M		1 Marl
ŕ	(Marking a calculation Draw a c (i)A g (ii)A po	sch eme: Cons – 2 M, Al contour line entle slope	1 70/6.737 = prect entirithmetic of the search sea	enting di (ii) (iv) Ov (vi)	ings - 1 Ma M, gradie ifferent fe A hill verhangin A ridge lin	rk, H.I. calmater Calculation	tion – 1 M		1 Marl
ŕ	(Marking a calculation Draw a c (i)A g (ii)A po	sch eme: Cons – 2 M, Al contour line entle slope	1 70/6.737 = prect entrithmetic of the search sear	enting di (ii) (iv) Ov (vi) A	ings - 1 Ma M, gradien ifferent fe A hill verhangin A ridge lin	eatures: ag cliff nes	tion – 1 M		1 Marl
ŕ	(Marking a calculation Draw a c (i)A g (ii)A po	sch eme: Cons – 2 M, Al contour line entle slope	1 70/6.737 = prect entrithmetic of the search sear	enting di (ii) (iv) Ov (vi) A	ings - 1 Ma M, gradie ifferent fe A hill verhangin A ridge lin	eatures: ag cliff nes	tion – 1 M		1 Marl

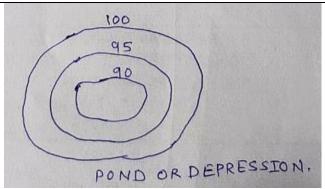



		ENGINE
	RIDGE LINE	1 Mark
6.	A ridge lines Attempt any TWO of the following:	12
a)	Explain the characteristics of contour with suitable sketch.	
Ans :	2. Two contours of different elevations can not cross each other except in overhanging cliff.	2 Marks each (Any three)

3. (i) When contour lines come close together, then it indicates steep slope.

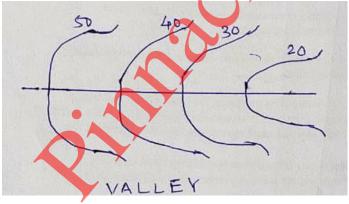

(ii) If contour lines are equally placed, uniform slope is indicated.

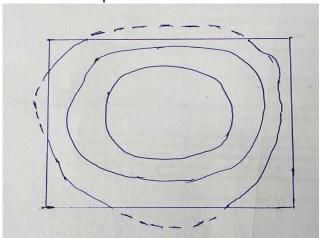
(iii) A series of straight, parallel and equally spaced contours represent a plane surface.



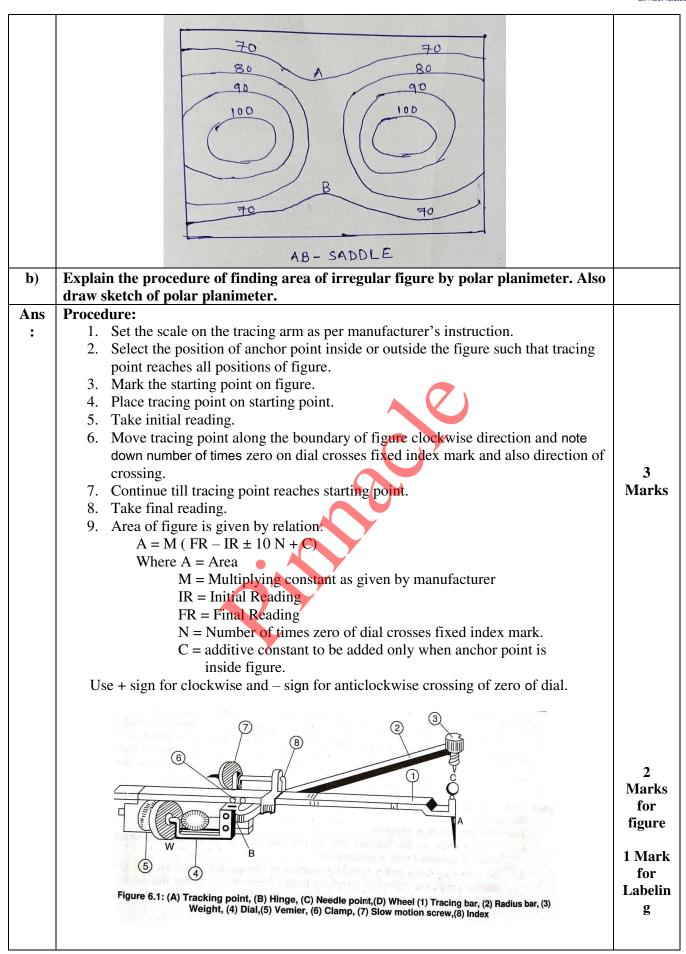
4. (i) Closed contour lines with higher values inside indicate hill.

(ii) Closed contour lines with lower values inside indicate depression.




5. (i) Ridge line and contour lines cross each other at right angle. For ridge line the higher elevation contour are inside the loop or bend.

(ii) Valley line and contour lines cross each other at right angle. Valley line is indicated by higher elevation contours outside the loop or bends.



6. Contour lines can not end anywhere, but close on themselves either within or outside the limit of map.

7. Saddle is the area between two hills on a ridge.

	IR	FR	Position of Anchor point	Remarks	
	7.825	3.425	Outside the fig.	The zero of disc passed fixed index mark once in clockwise direction	
	1.250	4.370	Inside the	Index marks passes twice in	
	sumptions - cond time ar			reverse direction ure traced once anchor point outsid	le and
sec Wh	nen anchor p IR = 7 M = 10 ea A = M (F)	nchor point soint is outside. 825, FR = 3 00 Sq. cm, C R - IR ± 10	is single figure: 3.425, N = 1 (CCC)	ure traced once anchor point outsid	le and